Back UNA.AS Fear & Greed Index

Image

UNA.AS Stock Data

Download UNA.AS GF Data (.xslx)
id Date GF Index Momentum Price Strength Price Breadth Volatility Close Price
$data['id'] 11-02-25 11:00 70 83.3333 88.1774 65.9091 45.7665 56.8
$data['id'] 10-02-25 11:00 70 83.3333 86.2069 61.3636 50.1869 56.68
$data['id'] 07-02-25 11:00 62 66.6667 72.4138 60.4167 50.1415 56.3
$data['id'] 06-02-25 11:00 62 66.6667 69.9507 60.4167 51.3689 56
$data['id'] 05-02-25 11:00 57 66.6667 54.1872 56.8182 51.9212 55.64
$data['id'] 04-02-25 11:00 58 66.6667 58.1281 56.8182 51.5324 55.44
$data['id'] 03-02-25 11:00 56 66.6667 54.6798 52.2727 51.1282 55.86
$data['id'] 31-01-25 11:00 62 66.6667 68.9656 56.8182 55.8918 55.38
$data['id'] 30-01-25 11:00 62 50 51.7242 54.3478 94.9645 55.88
$data['id'] 29-01-25 11:00 53 50 53.202 56.8182 55.4524 55.2
$data['id'] 28-01-25 11:00 63 66.6667 69.4581 57.5 59.8072 55.56
$data['id'] 27-01-25 11:00 60 50 39.9015 54.7619 96.5108 55.28
$data['id'] 24-01-25 11:00 52 33.3333 22.6601 54.7619 97.8506 53.98
$data['id'] 23-01-25 11:00 54 33.3333 27.5863 59.5238 98.3656 54.38
$data['id'] 22-01-25 11:00 58 33.3333 40.3942 60 99.228 54.06
$data['id'] 21-01-25 11:00 57 33.3333 37.931 60.5263 99.0704 54.76
$data['id'] 20-01-25 11:00 55 33.3333 33.0049 55.2632 98.7423 54.56
$data['id'] 17-01-25 11:00 45 16.6667 20.197 45.2381 99.5975 54.44
$data['id'] 16-01-25 11:00 28 16.6667 4.97514 42.5 49.0949 53.6
$data['id'] 15-01-25 11:00 25 16.6667 0 37.5 48.5283 53.18
$data['id'] 14-01-25 11:00 25 16.6667 0 39.4737 46.4732 53.14
$data['id'] 13-01-25 11:00 28 16.6667 4.0404 44.7368 46.6019 53.98
$data['id'] 10-01-25 11:00 32 16.6667 15.534 50 46.43 54.12
$data['id'] 09-01-25 11:00 34 16.6667 22.8156 54.7619 44.6671 54.82
$data['id'] 08-01-25 11:00 30 16.6667 12.6214 47.5 43.8667 54.24
$data['id'] 07-01-25 11:00 25 16.6667 0 44.7368 42.0481 54.14
$data['id'] 06-01-25 11:00 24 16.6667 0 44.7368 34.7723 53.51
$data['id'] 03-01-25 11:00 36 33.3333 34.7368 42.5 33.8725 54.96
$data['id'] 02-01-25 11:00 29 33.3333 17.3684 35.7143 29.6465 55.32
$data['id'] 31-12-24 11:00 22 16.6667 8.21257 32.5 32.675 54.88
$data['id'] 30-12-24 11:00 34 50 21.7391 34.2105 31.2638 54.75
$data['id'] 24-12-24 11:00 32 33.3333 19.1589 43.1818 33.6024 55.02
$data['id'] 23-12-24 11:00 30 33.3333 14.0187 40.4762 33.1262 54.82
$data['id'] 20-12-24 11:00 32 33.3333 17.757 45.6522 33.9839 55.14
$data['id'] 19-12-24 11:00 58 50 37.8505 45.6522 98.7454 55.26
$data['id'] 18-12-24 11:00 61 50 46.2617 50 99.2385 55.88
$data['id'] 17-12-24 11:00 61 50 44.8598 52.2727 98.9194 56.38
$data['id'] 16-12-24 11:00 60 50 41.5888 50 99.4336 56.4
$data['id'] 13-12-24 11:00 64 50 47.1963 60.8696 99.5551 55.98
$data['id'] 12-12-24 11:00 59 50 31.7757 58.6957 98.6075 56.16
$data['id'] 11-12-24 11:00 61 50 38.3178 58.6957 99.596 56.14
$data['id'] 10-12-24 11:00 59 50 32.8889 54.7619 98.7774 55.75
$data['id'] 09-12-24 11:00 57 50 28 54.7619 98.4889 55.6
$data['id'] 06-12-24 11:00 65 66.6667 43.1111 54.3478 99.4031 55.84
$data['id'] 05-12-24 11:00 68 66.6667 51.1111 58.6957 99.4509 56.3
$data['id'] 04-12-24 11:00 65 66.6667 42.6666 54.3478 98.1796 56.36
$data['id'] 03-12-24 11:00 59 66.6667 63.1111 56.8182 53.1284 56.54
$data['id'] 02-12-24 11:00 60 66.6667 63.5556 59.5238 52.9194 57.2
$data['id'] 29-11-24 11:00 56 66.6667 56 52.0833 52.8576 56.58
$data['id'] 28-11-24 11:00 57 66.6667 57.3333 52.0833 53.4938 56.76
$data['id'] 27-11-24 11:00 65 66.6667 50.6666 50 95.9059 56.72
$data['id'] 26-11-24 11:00 54 33.3333 42.2907 47.7273 95.5294 56.24
$data['id'] 25-11-24 11:00 55 33.3333 45.8149 47.7273 95.6963 56.1
$data['id'] 22-11-24 11:00 31 16.6667 18.9427 45.6522 42.9402 56.5
$data['id'] 21-11-24 11:00 24 16.6667 0.881077 39.5833 40.3328 54.66
$data['id'] 20-11-24 11:00 39 16.6667 4.79996 41.3043 96.9999 54.62
$data['id'] 19-11-24 11:00 38 16.6667 4.02926 38.6364 94.2444 54.54
$data['id'] 18-11-24 11:00 36 16.6667 0.366309 34.0909 94.2976 54.52
$data['id'] 15-11-24 11:00 35 16.6667 0 31.25 94.1628 54.4
$data['id'] 14-11-24 11:00 35 16.6667 0 31.25 94.3015 54.34
$data['id'] 13-11-24 11:00 34 16.6667 0 28.2609 94.0806 54.22
$data['id'] 12-11-24 11:00 35 16.6667 0 29.5455 94.0738 54.12
$data['id'] 11-11-24 11:00 37 16.6667 5.88234 34.0909 92.3602 54.72
$data['id'] 08-11-24 11:00 36 16.6667 0 35.4167 92.355 54.54
$data['id'] 07-11-24 11:00 37 16.6667 0 39.5833 92.3426 54.72
$data['id'] 06-11-24 11:00 42 16.6667 13.0208 45.6522 94.1173 55.12
$data['id'] 05-11-24 11:00 43 16.6667 17.1875 47.7273 93.824 56.3
$data['id'] 04-11-24 11:00 44 16.6667 22.3958 43.1818 94.1078 56.46
$data['id'] 01-11-24 11:00 42 16.6667 16.1458 43.75 94.5287 56.9
$data['id'] 31-10-24 11:00 46 33.3333 15.0485 43.75 94.4681 56.12
$data['id'] 30-10-24 11:00 58 50 42.9907 45.6522 94.2083 57
$data['id'] 29-10-24 11:00 63 50 58.8785 52.2727 94.217 57.56
$data['id'] 28-10-24 11:00 59 50 44.8598 50 94.7502 57.72
$data['id'] 25-10-24 11:00 56 50 37.3832 45.6522 94.2763 57.14
$data['id'] 24-10-24 11:00 55 50 63.4704 50 59.8276 57.56
$data['id'] 23-10-24 11:00 45 50 44.2982 47.7273 41.1186 55.8
$data['id'] 22-10-24 11:00 45 50 44.7368 47.7273 41.038 57.14
$data['id'] 21-10-24 11:00 50 50 60.965 50 39.2165 57.6
$data['id'] 18-10-24 11:00 44 33.3333 49.5614 52.2727 43.5604 57.92
$data['id'] 17-10-24 11:00 50 50 62.7193 50 40.6855 58.36
$data['id'] 16-10-24 11:00 51 50 64.4737 52.2727 38.0968 58.04
$data['id'] 15-10-24 11:00 51 50 66.6667 52.2727 38.6684 58.52
$data['id'] 14-10-24 11:00 47 50 52.6316 50 36.8025 57.62
$data['id'] 11-10-24 11:00 41 33.3333 46.4913 50 36.329 57.34
$data['id'] 10-10-24 11:00 45 50 48.2456 45.6522 36.3342 57.14
$data['id'] 09-10-24 11:00 44 50 47.807 45.6522 36.3485 57.44
$data['id'] 08-10-24 11:00 36 33.3333 37.2807 38.6364 35.9833 57.06
$data['id'] 07-10-24 11:00 38 33.3333 43.8596 40.4762 36.4453 56.88
$data['id'] 04-10-24 11:00 38 33.3333 42.1053 41.3043 39.2459 57
$data['id'] 03-10-24 11:00 50 50 74.1047 45.6522 34.0602 57.12
$data['id'] 02-10-24 11:00 55 50 83.1956 54.3478 33.6552 58.16
$data['id'] 01-10-24 11:00 54 50 82.6446 52.2727 33.6266 58.36
$data['id'] 30-09-24 11:00 58 66.6667 83.7466 52.2727 32.9834 58.36
$data['id'] 27-09-24 11:00 60 66.6667 85.9504 56.25 32.6295 58.82
$data['id'] 26-09-24 11:00 59 66.6667 79.8898 56.25 33.3435 58.34
$data['id'] 25-09-24 11:00 60 66.6667 81.5427 58.6957 33.9142 58.56
$data['id'] 24-09-24 11:00 59 66.6667 76.8595 56.8182 35.9058 58.26
$data['id'] 23-09-24 11:00 60 66.6667 81.5427 61.3636 34.4225 58.5
$data['id'] 20-09-24 11:00 59 66.6667 74.5902 64.5833 32.8269 57.76
$data['id'] 19-09-24 11:00 61 66.6667 79.4038 64.5833 33.4611 57.74
$data['id'] 18-09-24 11:00 62 66.6667 84.25 63.0435 35.2745 57.92
$data['id'] 17-09-24 11:00 63 66.6667 87.2549 65.9091 34.1242 58.54
$data['id'] 16-09-24 11:00 65 66.6667 89.8345 70.4545 34.5637 58.8
$data['id'] 13-09-24 11:00 67 83.3333 87.5294 64.5833 34.5841 58.6
$data['id'] 12-09-24 11:00 67 83.3333 87.643 64.5833 35.5206 58.42
$data['id'] 11-09-24 11:00 69 83.3333 90.4545 67.3913 35.4862 58.8
$data['id'] 09-09-24 11:00 74 100 100 70.4545 29.457 59.54
$data['id'] 06-09-24 11:00 73 100 95.6522 64.5833 32.4431 58.98
$data['id'] 05-09-24 11:00 75 100 100 68.75 33.8749 59.3
$data['id'] 04-09-24 11:00 74 100 97.4748 63.0435 38.1009 58.84
$data['id'] 03-09-24 11:00 75 100 100 63.6364 39.5702 58.66
$data['id'] 02-09-24 11:00 75 100 100 61.3636 39.8221 58.42
$data['id'] 30-08-24 11:00 79 100 100 64.5833 52.1729 58.18
$data['id'] 29-08-24 11:00 78 100 100 62.5 51.7519 58.3
$data['id'] 28-08-24 11:00 78 100 100 60.8696 51.5077 57.68
$data['id'] 27-08-24 11:00 69 66.6667 100 59.0909 51.8034 57.34
$data['id'] 26-08-24 11:00 67 66.6667 97.6589 54.5455 51.6634 56.92
$data['id'] 23-08-24 11:00 68 66.6667 95.6522 58.3333 51.3839 56.7
$data['id'] 22-08-24 11:00 66 66.6667 93.6455 54.1667 52.574 56.4
$data['id'] 21-08-24 11:00 61 50 75.9198 52.1739 67.5036 55.4
$data['id'] 20-08-24 11:00 60 50 74.5819 50 68.1737 55.26
$data['id'] 19-08-24 11:00 63 66.6667 75.2508 45.4545 68.5222 55.58
$data['id'] 16-08-24 11:00 65 66.6667 78.2609 50 68.4686 55.5
$data['id'] 15-08-24 11:00 67 66.6667 79.5986 54.1667 68.3937 55.8
$data['id'] 14-08-24 11:00 67 66.6667 78.5953 56.5217 68.7475 55.22
$data['id'] 13-08-24 11:00 70 83.3333 74.6795 54.5455 69.0074 55.28
$data['id'] 12-08-24 11:00 69 83.3333 75.7485 50 68.9436 55.08
$data['id'] 09-08-24 11:00 73 83.3333 82.647 58.3333 68.7901 55.46
$data['id'] 08-08-24 11:00 73 83.3333 80.1952 62.5 69.6831 55.76
$data['id'] 07-08-24 11:00 75 83.3333 85.7741 65.2174 67.7648 56.32
$data['id'] 06-08-24 11:00 71 83.3333 77.4059 59.0909 68.1174 55.66
$data['id'] 05-08-24 11:00 80 100 93.3055 63.6364 64.4334 55.06
$data['id'] 02-08-24 11:00 82 100 99.1392 66.6667 63.774 56.84
$data['id'] 01-08-24 11:00 82 100 98.8522 66.6667 63.7701 56.54
$data['id'] 31-07-24 11:00 83 100 100 69.5652 63.6388 56.58
$data['id'] 30-07-24 11:00 82 100 98.4686 65.9091 63.722 56.24
$data['id'] 29-07-24 11:00 83 100 100 69.0476 64.3954 56.24
$data['id'] 26-07-24 11:00 79 100 95.8261 58.6957 64.4365 55.98
$data['id'] 25-07-24 11:00 79 100 100 58.6957 59.9642 55.32
$data['id'] 24-07-24 11:00 63 83.3333 72.7047 54.3478 42.086 52.26
$data['id'] 23-07-24 11:00 68 83.3333 90.5707 61.3636 40.0607 52.9
$data['id'] 22-07-24 11:00 70 83.3333 92.5559 64.2857 39.918 53.32
$data['id'] 19-07-24 11:00 73 100 96.6667 58.6957 38.9019 53.38
$data['id'] 18-07-24 11:00 75 100 100 63.0435 37.6488 53.66
$data['id'] 17-07-24 11:00 63 66.6667 93.5484 60.8696 33.0578 53.08
$data['id'] 16-07-24 11:00 62 66.6667 91.4028 57.1429 33.3443 52.56
$data['id'] 15-07-24 11:00 69 83.3333 100 61.9048 32.7325 52.52
$data['id'] 12-07-24 11:00 59 50 94.5205 60.8696 30.9711 52.78
$data['id'] 11-07-24 11:00 59 50 93.1506 60.8696 32.5848 52.34
$data['id'] 10-07-24 11:00 55 50 85.8974 56.5217 31.3505 52.2
$data['id'] 09-07-24 11:00 54 50 82.9059 54.5455 32.3006 51.62
$data['id'] 08-07-24 11:00 51 50 74.3689 52.381 29.7698 51.5
$data['id'] 05-07-24 11:00 50 33.3333 81.7481 56.5217 29.4386 51.16
$data['id'] 04-07-24 11:00 49 33.3333 77.892 56.5217 28.9668 51.22
$data['id'] 03-07-24 11:00 48 33.3333 76.0925 56.5217 28.7126 50.98
$data['id'] 02-07-24 11:00 53 50 75.0881 52.381 36.5064 50.9
$data['id'] 01-07-24 11:00 59 66.6667 83.7838 57.1429 32.0244 51.36
$data['id'] 28-06-24 11:00 60 66.6667 87.3731 58.3333 31.3351 51.26
$data['id'] 27-06-24 11:00 62 66.6667 95.7159 62.5 26.665 51.82
$data['id'] 26-06-24 11:00 67 83.3333 97.0687 65.2174 26.2189 52.34
$data['id'] 25-06-24 11:00 74 100 98.4216 66.6667 33.1045 52.4
$data['id'] 24-06-24 11:00 64 66.6667 95.0394 63.6364 33.2722 52.48
$data['id'] 21-06-24 11:00 75 100 96.6178 70.8333 32.8618 52.34
$data['id'] 20-06-24 11:00 74 100 95.7159 66.6667 33.8928 52.36
$data['id'] 19-06-24 11:00 73 100 95.2649 65.2174 35.3003 52.52
$data['id'] 18-06-24 11:00 75 100 97.0687 70.4545 34.6807 52.44
$data['id'] 17-06-24 11:00 74 100 95.9414 65.9091 35.3758 52.44
$data['id'] 14-06-24 11:00 75 100 100 68.75 34.2688 52.64
$data['id'] 13-06-24 11:00 73 100 98.524 60.4167 36.1512 52.24
$data['id'] 12-06-24 11:00 75 100 100 65.9091 36.3564 51.98
$data['id'] 07-06-24 11:00 76 100 100 68.75 37.8168 51.74
$data['id'] 06-06-24 11:00 71 83.3333 98.4273 64.5833 38.5239 51.48
$data['id'] 05-06-24 11:00 76 100 100 67.3913 38.496 51.48
$data['id'] 04-06-24 11:00 67 66.6667 100 65.9091 35.6135 51.28
$data['id'] 03-06-24 11:00 65 66.6667 97.6366 61.3636 38.2553 50.58
$data['id'] 31-05-24 11:00 64 66.6667 92.9099 58.6957 40.343 50.14
$data['id'] 30-05-24 11:00 62 66.6667 87.5923 56.8182 39.5388 50.02
$data['id'] 29-05-24 11:00 62 66.6667 88.9217 56.8182 39.0108 49.73
$data['id'] 28-05-24 11:00 64 66.6667 94.9778 59.5238 37.2798 49.96
$data['id'] 27-05-24 11:00 68 83.3333 94.9778 57.5 37.6928 50.46
$data['id'] 24-05-24 11:00 70 83.3333 94.387 61.3636 41.1908 50.42
$data['id'] 23-05-24 11:00 81 100 100 61.3636 63.3865 50.64
$data['id'] 22-05-24 11:00 78 100 95.4199 56.8182 63.5294 50.16
$data['id'] 21-05-24 11:00 73 83.3333 90.3817 54.7619 64.1895 50.06
$data['id'] 20-05-24 11:00 79 100 96.6413 57.5 63.6434 50.16
$data['id'] 17-05-24 11:00 81 100 98.7321 65.9091 63.0697 50.44
$data['id'] 16-05-24 11:00 68 83.3333 91.1252 61.3636 36.2605 49.76
$data['id'] 15-05-24 11:00 71 100 93.9778 56.8182 36.804 50.12
$data['id'] 14-05-24 11:00 73 100 98.4152 59.5238 36.4564 49.97
$data['id'] 13-05-24 11:00 74 100 100 62.5 36.1839 50.18
$data['id'] 10-05-24 11:00 73 100 100 56.8182 35.4938 49.83
$data['id'] 09-05-24 11:00 71 100 100 52.2727 35.3604 49.47
$data['id'] 08-05-24 11:00 71 100 100 52.2727 35.2316 49.17
$data['id'] 07-05-24 11:00 71 100 99.3927 50 35.5068 49.12
$data['id'] 06-05-24 11:00 69 100 95.3441 47.5 35.6496 48.26
$data['id'] 03-05-24 11:00 69 100 98.3805 43.1818 35.221 48.75
$data['id'] 02-05-24 11:00 69 100 100 43.1818 35.0754 48.85
$data['id'] 30-04-24 11:00 68 100 100 40.4762 33.8322 48.37
$data['id'] 29-04-24 11:00 68 100 100 42.5 33.2952 48.12
$data['id'] 26-04-24 11:00 65 83.3333 100 43.1818 33.556 48.24
$data['id'] 25-04-24 11:00 65 83.3333 97.2896 43.1818 37.0868 47.52
$data['id'] 24-04-24 11:00 47 50 34.8074 45.2381 60.1345 44.95
$data['id'] 23-04-24 11:00 48 50 35.6633 47.5 60.1029 44.96
$data['id'] 22-04-24 11:00 35 16.6667 30.8132 42.5 53.0252 45.07
$data['id'] 19-04-24 11:00 33 16.6667 21.6834 43.1818 54.4677 44.48
$data['id'] 18-04-24 11:00 31 16.6667 12.5536 43.1818 52.8405 44.24
$data['id'] 17-04-24 11:00 28 16.6667 6.65711 45.2381 43.6314 43.88
$data['id'] 16-04-24 11:00 25 16.6667 0 42.5 43.4682 43.9
$data['id'] 15-04-24 11:00 25 16.6667 0 42.5 43.0967 44.27
$data['id'] 12-04-24 11:00 37 50 7.31264 47.7273 43.2219 44.49
$data['id'] 11-04-24 11:00 36 50 4.02196 47.7273 43.1069 44.72
$data['id'] 10-04-24 11:00 32 33.3333 4.02196 50 42.8269 44.71
$data['id'] 09-04-24 11:00 39 50 22.0727 42.5 42.7057 44.7
$data['id'] 08-04-24 11:02 41 50 27.922 47.5 42.5405 44.64
$data['id'] 05-04-24 11:00 46 50 42.1241 50 42.3071 44.8
$data['id'] 04-04-24 11:00 48 50 50.2387 52.2727 42.7629 45.24
$data['id'] 03-04-24 11:00 52 50 63.3651 54.7619 43.854 45.41
$data['id'] 02-04-24 11:00 61 66.6667 76.7303 57.5 44.7551 46.03
$data['id'] 28-03-24 11:00 61 66.6667 79.5943 56.8182 44.7599 46.56
$data['id'] 27-03-24 11:00 56 66.6667 68.1384 47.7273 44.5983 46.285
$data['id'] 26-03-24 11:00 51 50 67.3031 43.1818 43.947 46.215
$data['id'] 25-03-24 11:00 52 50 73.8663 45.2381 41.8324 46.27
$data['id'] 22-03-24 11:00 52 50 70.7637 47.7273 42.8433 46.35
$data['id'] 21-03-24 11:00 46 50 52.3866 38.6364 43.9055 45.61
$data['id'] 20-03-24 11:00 48 50 58.4725 40.9091 43.4371 45.51
$data['id'] 19-03-24 11:00 52 50 72.0764 45.4545 42.8401 46.105
$data['id'] 18-03-24 11:00 42 33.3333 37.7088 42.8571 58.0877 44.675
$data['id'] 15-03-24 11:00 48 33.3333 50.5966 50 58.4398 45.215
$data['id'] 14-03-24 10:00 50 33.3333 61.4558 54.5455 54.565 45.45
$data['id'] 13-03-24 10:00 47 33.3333 54.2959 45.4545 55.4164 45.65
$data['id'] 12-03-24 10:02 48 33.3333 56.2053 50 54.1633 45.475
$data['id'] 11-03-24 10:02 46 33.3333 47.7327 47.619 55.6623 45.2
$data['id'] 08-03-24 10:00 41 33.3333 38.7828 36.3636 57.2434 45.015
$data['id'] 07-03-24 10:00 44 33.3333 44.5107 40.9091 57.4635 44.87
$data['id'] 06-03-24 10:00 42 33.3333 48.2101 40.9091 45.597 45.1
$data['id'] 05-03-24 10:00 42 33.3333 47.9713 45.4545 44.8633 45.32
$data['id'] 04-03-24 12:00 40 33.3333 46.8974 38.0952 43.5912 45.185
$data['id'] 01-03-24 12:00 44 33.3333 52.864 50 43.0541 45.205
$data['id'] 29-02-24 12:00 45 33.3333 49.5226 54.1667 43.0576 45.36
$data['id'] 28-02-24 12:00 50 50 52.864 56.5217 43.2251 45.385
$data['id'] 27-02-24 12:00 58 66.6667 64.6778 59.0909 44.2557 45.85
$data['id'] 26-02-24 12:00 64 66.6667 82.4582 63.6364 46.3542 46.67
$data['id'] 23-02-24 12:00 71 83.3333 89.0215 66.6667 46.6734 46.88
$data['id'] 22-02-24 12:00 68 83.3333 81.5035 66.6667 43.1195 46.67
$data['id'] 21-02-24 12:00 73 83.3333 97.6134 67.3913 45.4655 47.31
$data['id'] 20-02-24 12:00 73 83.3333 99.6373 65.9091 45.3413 47.4
$data['id'] 19-02-24 12:00 73 83.3333 100 65.9091 45.2276 47.35
$data['id'] 16-02-24 12:00 69 83.3333 94.9558 56.25 45.2041 47.045
$data['id'] 15-02-24 12:00 65 83.3333 83.4804 52.0833 45.051 46.595
$data['id'] 14-02-24 12:00 70 83.3333 96.5952 58.6957 44.1372 46.65
$data['id'] 13-02-24 12:00 69 83.3333 93.1904 56.8182 42.9042 46.865
$data['id'] 12-02-24 12:00 67 83.3333 90.0378 52.2727 42.7345 46.82
$data['id'] 09-02-24 12:00 72 100 96.9734 52.0833 42.5351 46.965
$data['id'] 08-02-24 12:00 74 100 100 56.25 43.0075 47.175
$data['id'] 07-02-24 12:00 73 100 94.1916 54.3478 46.8669 45.82
$data['id'] 06-02-24 12:00 76 100 100 56.8182 47.703 46.47
$data['id'] 05-02-24 12:00 71 83.3333 100 56.8182 47.5691 45.705
$data['id'] 02-02-24 12:00 70 83.3333 100 52.0833 47.6206 45.245
$data['id'] 01-02-24 12:00 58 50 89.3827 45.6522 47.6899 45.105
$data['id'] 31-01-24 12:00 65 66.6667 100 47.7273 47.3077 45.2
$data['id'] 30-01-24 12:00 60 50 100 45.2381 46.1565 45.085
$data['id'] 29-01-24 12:00 58 50 91.4209 45.2381 46.3824 44.875
$data['id'] 26-01-24 12:00 52 50 65.3303 47.7273 47.7649 44.64
$data['id'] 25-01-24 12:00 34 33.3333 11.0849 40.4762 51.1452 43.69
$data['id'] 24-01-24 12:02 35 33.3333 16.2698 42.5 51.2411 43.565
$data['id'] 23-01-24 12:02 34 33.3333 4.76186 44.7368 53.3711 43.73
$data['id'] 22-01-24 12:00 31 33.3333 0 39.4737 52.6201 43.235
$data['id'] 19-01-24 12:00 38 50 7.73808 45.2381 52.748 43.27
$data['id'] 18-01-24 12:00 40 50 10.3175 50 53.3151 43.42
$data['id'] 17-01-24 12:00 47 50 31.1508 52.5 56.4553 43.94
$data['id'] 16-01-24 12:00 53 50 50.0001 55.2632 60.2752 44.45
$data['id'] 15-01-24 12:00 59 66.6667 58.9286 55.2632 58.9031 44.425
$data['id'] 12-01-24 12:00 63 66.6667 67.4603 59.5238 59.3116 44.82
$data['id'] 11-01-24 12:00 55 50 50.7936 54.7619 64.8511 44.3
$data['id'] 10-01-24 12:00 65 66.6667 68.8492 57.5 67.6471 44.795
$data['id'] 09-01-24 12:00 58 50 55.3634 60.5263 68.3722 45.065
$data['id'] 08-01-24 12:00 55 50 49.3079 55.2632 68.6224 44.69
$data['id'] 05-01-24 12:00 54 50 47.924 52.381 68.547 44.565
$data['id'] 04-01-24 12:14 54 50 46.1937 52.381 67.6947 44.59
$data['id'] 03-01-24 12:00 57 50 66.609 55 58.4299 44.755
$data['id'] 02-01-24 12:00 50 50 28.8927 52.6316 71.7037 44.035
$data['id'] 29-12-23 12:00 48 50 21.4533 52.381 70.8834 43.825
$data['id'] 28-12-23 12:00 48 50 20.7613 52.381 70.5542 43.86
$data['id'] 27-12-23 12:00 46 50 16.782 47.619 70.5368 43.55
$data['id'] 22-12-23 12:00 48 50 18.8582 52.1739 71.278 43.78
$data['id'] 21-12-23 12:00 47 50 18.1661 52.1739 71.0481 43.56
$data['id'] 20-12-23 12:00 50 50 25.2595 56.5217 70.0401 43.85
$data['id'] 19-12-23 12:00 48 50 19.8962 54.5455 70.0192 43.69
$data['id'] 18-12-23 12:00 44 50 11.7647 52.381 65.3657 43.56
$data['id'] 15-12-23 12:00 43 50 15.8893 43.4783 63.7672 43.695
$data['id'] 14-12-23 12:00 49 50 34.9854 47.8261 63.8407 43.68
$data['id'] 13-12-23 12:00 45 50 30.5671 43.4783 57.9308 44.165
$data['id'] 12-12-23 12:00 42 50 23.5132 40.9091 56.7284 44.025
$data['id'] 11-12-23 12:00 39 50 14.0187 40.4762 54.2911 44.15
$data['id'] 08-12-23 12:00 51 66.6667 34.3124 50 56.6007 44.17
$data['id'] 07-12-23 12:00 48 50 36.5821 51.455 54.3833 44.395
$data['id'] 06-12-23 12:00 46 50 34.7129 51.3907 48.7043 44.42
$data['id'] 05-12-23 12:00 45 50 30.9253 51.3263 48.6756 44.385
$data['id'] 04-12-23 12:00 40 33.3333 26.4775 51.3944 48.8944 44.495

Nota: De weergegeven waardes zijn genormaliseerd. De genormaliseerde waarden zijn zo ingesteld dat een waarde van 50 een neutraal marktsentiment aangeeft. Waarden boven de 50 wijzen op een positief (bullish) sentiment (hebzucht), terwijl waarden onder de 50 een negatief (bearish) sentiment (angst) aanduiden.