Back RAND.AS Fear & Greed Index

Image

RAND.AS Stock Data

Download RAND.AS GF Data (.xslx)
id Date GF Index Momentum Price Strength Price Breadth Volatility Close Price
$data['id'] 11-02-25 11:00 48 50 46.5863 52.2727 45.3003 41.51
$data['id'] 10-02-25 11:00 51 50 55.6225 56.8182 44.173 41.09
$data['id'] 07-02-25 11:00 52 50 64.6587 52.0833 42.239 41.55
$data['id'] 06-02-25 11:00 54 50 71.4859 52.0833 43.9269 42.27
$data['id'] 05-02-25 11:00 57 66.6667 60.4417 52.2727 48.6255 41.6
$data['id'] 04-02-25 11:00 49 50 52.4097 47.7273 48.3037 41.89
$data['id'] 03-02-25 11:00 60 50 39.3574 52.2727 99.1842 41.44
$data['id'] 31-01-25 11:00 56 66.6667 62.4498 47.7273 49.8294 41.94
$data['id'] 30-01-25 11:00 61 66.6667 76.3052 54.3478 48.2244 41.72
$data['id'] 29-01-25 11:00 60 66.6667 74.498 52.2727 49.1101 42.3
$data['id'] 28-01-25 11:00 58 50 81.1245 52.5 50.1293 42.36
$data['id'] 27-01-25 11:00 53 50 64.6587 50 49.9855 42.13
$data['id'] 24-01-25 11:00 54 50 68.0723 50 49.5529 42.13
$data['id'] 23-01-25 11:00 47 50 44.7791 50 45.5588 41.02
$data['id'] 22-01-25 11:00 53 50 62.8514 57.5 43.7645 41.18
$data['id'] 21-01-25 11:00 49 50 53.8153 50 45.5339 41.54
$data['id'] 20-01-25 11:00 62 50 43.5743 55.2632 99.3862 41.47
$data['id'] 17-01-25 11:00 54 33.3333 36.1446 50 99.433 40.53
$data['id'] 16-01-25 11:00 48 33.3333 19.2771 42.5 99.0914 39.95
$data['id'] 15-01-25 11:00 44 33.3333 3.012 42.5 99.9941 39.21
$data['id'] 14-01-25 11:00 46 33.3333 9.23693 44.7368 99.8596 38.81
$data['id'] 13-01-25 11:00 29 33.3333 0 34.2105 49.8213 38.84
$data['id'] 10-01-25 11:00 29 33.3333 2.71961 30.9524 49.3931 38.55
$data['id'] 09-01-25 11:00 30 33.3333 9.20499 30.9524 49.298 39.22
$data['id'] 08-01-25 11:00 40 50 31.3808 32.5 47.9031 40.04
$data['id'] 07-01-25 11:00 58 50 43.3054 39.4737 99.6675 40.67
$data['id'] 06-01-25 11:00 37 33.3333 27.9851 39.4737 49.9601 40.61
$data['id'] 03-01-25 11:00 47 16.6667 26.1194 47.5 99.9965 40.07
$data['id'] 02-01-25 11:00 47 16.6667 23.3209 50 99.8747 40.27
$data['id'] 31-12-24 11:00 36 16.6667 29.6642 52.5 48.9845 40.71
$data['id'] 30-12-24 11:00 34 16.6667 21.4285 50 48.5494 40.12
$data['id'] 24-12-24 11:00 33 16.6667 17.9402 52.2727 49.116 40.05
$data['id'] 23-12-24 11:00 30 16.6667 10.7973 45.2381 48.4573 39.7
$data['id'] 20-12-24 11:00 23 0 0 45.6522 47.6449 39.48
$data['id'] 19-12-24 11:00 29 33.3333 0 45.6522 40.1474 38.61
$data['id'] 18-12-24 11:00 33 50 1.32453 45.6522 38.9709 40.24
$data['id'] 17-12-24 11:00 40 50 20.7506 52.2727 39.396 40.6
$data['id'] 16-12-24 11:00 41 50 26.2694 50 38.6263 41.23
$data['id'] 13-12-24 11:00 47 50 39.9559 63.0435 37.4596 41.96
$data['id'] 12-12-24 11:00 45 50 36.4239 58.6957 38.7088 42.02
$data['id'] 11-12-24 11:00 57 66.6667 64.6799 63.0435 34.7552 42.58
$data['id'] 10-12-24 11:00 51 50 57.1739 59.5238 40.7897 42.95
$data['id'] 09-12-24 11:00 56 50 71.9565 64.2857 39.712 43.62
$data['id'] 06-12-24 11:00 56 50 71.3044 63.0435 41.7604 43.32
$data['id'] 05-12-24 11:00 47 50 35 58.6957 46.1844 42.4
$data['id'] 04-12-24 11:00 50 50 43.4782 58.6957 49.5371 42.22
$data['id'] 03-12-24 11:00 62 50 44.7826 56.8182 99.8635 42.15
$data['id'] 02-12-24 11:00 59 50 33.0435 54.7619 99.8983 42.13
$data['id'] 29-11-24 11:00 56 50 27.1739 47.9167 99.9444 41.6
$data['id'] 28-11-24 11:00 53 33.3333 34.3478 47.9167 99.6412 41.65
$data['id'] 27-11-24 11:00 45 16.6667 20 45.6522 99.9359 41.33
$data['id'] 26-11-24 11:00 48 33.3333 16.9566 43.1818 99.946 40.89
$data['id'] 25-11-24 11:00 33 33.3333 10.6522 43.1818 48.7373 41.36
$data['id'] 22-11-24 11:00 25 16.6667 0 36.9565 49.3929 40.42
$data['id'] 21-11-24 11:00 26 16.6667 0 39.5833 48.3737 40.45
$data['id'] 20-11-24 11:00 34 33.3333 10.7692 45.6522 46.7303 40.91
$data['id'] 19-11-24 11:00 45 33.3333 5.64105 43.1818 99.8598 41.43
$data['id'] 18-11-24 11:00 46 33.3333 15.1282 38.6364 99.1951 41.54
$data['id'] 15-11-24 11:00 47 33.3333 14.6154 43.75 99.1306 41.54
$data['id'] 14-11-24 11:00 40 16.6667 4.61539 43.75 98.5883 41.37
$data['id'] 13-11-24 11:00 46 50 0 41.3043 96.4013 40.92
$data['id'] 12-11-24 11:00 52 50 18.8034 43.1818 96.536 41.34
$data['id'] 11-11-24 11:00 56 50 33.9032 47.7273 96.2885 42.54
$data['id'] 08-11-24 11:00 57 50 34.4729 47.9167 97.2679 42.07
$data['id'] 07-11-24 11:00 62 50 54.9857 47.9167 97.9286 43.61
$data['id'] 06-11-24 11:00 62 50 55.8404 45.6522 97.0992 42.62
$data['id'] 05-11-24 11:00 48 33.3333 18.5186 43.1818 97.7138 42.02
$data['id'] 04-11-24 11:00 60 50 43.8746 52.2727 97.6724 42.72
$data['id'] 01-11-24 11:00 56 50 27.3504 50 97.7449 42.64
$data['id'] 31-10-24 11:00 55 50 25.0712 47.9167 97.5138 42.24
$data['id'] 30-10-24 11:00 58 50 34.7578 50 97.5311 42.53
$data['id'] 29-10-24 11:00 65 50 56.98 56.8182 97.4778 42.83
$data['id'] 28-10-24 11:00 62 50 48.1482 54.7619 97.4197 43.16
$data['id'] 25-10-24 11:00 55 33.3333 38.4616 54.3478 97.5332 43.3
$data['id'] 24-10-24 11:00 54 50 57.265 58.6957 53.9003 43.06
$data['id'] 23-10-24 11:00 58 50 75.5263 56.8182 53.5096 43.19
$data['id'] 22-10-24 11:00 62 50 87.6316 56.8182 54.0142 43.99
$data['id'] 21-10-24 11:00 54 50 58.1579 54.7619 53.1767 43.3
$data['id'] 18-10-24 11:00 56 50 73.9473 52.2727 50.7245 43.57
$data['id'] 17-10-24 11:00 64 50 100 58.6957 50.1596 42.56
$data['id'] 16-10-24 11:00 63 50 94.4736 56.8182 51.0332 44.86
$data['id'] 15-10-24 11:00 60 50 84.4737 56.8182 50.7974 44.35
$data['id'] 14-10-24 11:00 53 50 63.9473 50 50.9416 43.91
$data['id'] 11-10-24 11:00 59 50 76.8421 58.6957 50.9971 43.8
$data['id'] 10-10-24 11:00 55 50 68.1347 54.3478 50.9742 43.65
$data['id'] 09-10-24 11:00 61 50 90.6736 54.3478 50.4391 44.73
$data['id'] 08-10-24 11:00 56 50 73.8342 52.2727 50.833 44.22
$data['id'] 07-10-24 11:00 56 50 76.4423 50 50.4985 44.6
$data['id'] 04-10-24 11:00 59 50 83.6539 54.3478 50.6032 44.26
$data['id'] 03-10-24 11:00 56 50 73.3174 50 52.2313 43.95
$data['id'] 02-10-24 11:00 54 50 69.4118 45.6522 52.291 43.75
$data['id'] 01-10-24 11:00 60 66.6667 75.2941 47.7273 52.3784 43.91
$data['id'] 30-09-24 11:00 62 66.6667 82.3529 47.7273 52.3304 44.59
$data['id'] 27-09-24 11:00 55 50 71.5936 50 51.289 44.77
$data['id'] 26-09-24 11:00 54 50 22.6329 45.8333 99.4519 43.19
$data['id'] 25-09-24 11:00 56 50 28.8683 47.8261 99.3407 42.75
$data['id'] 24-09-24 11:00 55 50 68.8222 54.5455 50.4295 43.21
$data['id'] 23-09-24 11:00 51 50 50.3464 54.5455 50.4024 43.67
$data['id'] 20-09-24 11:00 58 50 71.5936 62.5 49.2481 43.93
$data['id'] 19-09-24 11:00 58 50 75.7506 62.5 47.093 44.68
$data['id'] 18-09-24 11:00 52 50 53.8106 60.8696 46.3036 43.64
$data['id'] 17-09-24 11:00 48 50 41.5705 59.0909 45.2406 43.33
$data['id'] 16-09-24 11:00 45 50 29.7922 59.0909 44.7226 42.55
$data['id'] 13-09-24 11:00 44 50 26.7898 54.1667 46.0118 42.31
$data['id'] 12-09-24 11:00 40 50 12.4711 54.1667 44.498 41.64
$data['id'] 11-09-24 11:00 41 50 18.0139 52.1739 44.9037 41.57
$data['id'] 10-09-24 11:00 46 50 32.3326 59.0909 44.0302 41.74
$data['id'] 09-09-24 11:00 44 50 27.7136 54.5455 45.0003 42.25
$data['id'] 06-09-24 11:00 44 50 43.1871 50 33.3809 42.21
$data['id'] 05-09-24 11:00 44 50 50.1155 50 28.8633 43.68
$data['id'] 04-09-24 11:00 42 50 40.1848 47.8261 30.7136 42.87
$data['id'] 03-09-24 11:00 48 50 61.0092 54.5455 28.4596 43.14
$data['id'] 02-09-24 11:00 45 50 53.6697 50 28.4791 43.52
$data['id'] 30-08-24 11:00 52 66.6667 59.879 54.1667 28.5247 43.71
$data['id'] 29-08-24 11:00 53 66.6667 53.8307 54.1667 38.9922 43.68
$data['id'] 28-08-24 11:00 51 50 51.0081 54.3478 50.2081 43.61
$data['id'] 27-08-24 11:00 52 50 55.4435 52.2727 50.3559 43.55
$data['id'] 26-08-24 11:00 59 50 44.7581 43.1818 99.4907 43.44
$data['id'] 23-08-24 11:00 59 50 40.0383 47.9167 99.0086 43.45
$data['id'] 22-08-24 11:00 53 33.3333 32.6126 47.9167 99.103 43.13
$data['id'] 21-08-24 11:00 50 33.3333 25.4054 45.6522 99.213 42.46
$data['id'] 20-08-24 11:00 45 16.6667 23.4798 43.1818 99.067 42.24
$data['id'] 19-08-24 11:00 45 16.6667 17.3981 47.7273 98.9186 42.51
$data['id'] 16-08-24 11:00 46 16.6667 17.8003 52.0833 98.869 42.12
$data['id'] 15-08-24 11:00 42 16.6667 6.34924 47.9167 99.1863 42.15
$data['id'] 14-08-24 11:00 41 16.6667 6.32415 45.6522 98.8648 41.31
$data['id'] 13-08-24 11:00 41 16.6667 2.63506 47.7273 98.9945 41.49
$data['id'] 12-08-24 11:00 41 16.6667 1.60004 47.7273 99.0256 41.05
$data['id'] 09-08-24 11:00 44 16.6667 8.0754 56.25 98.6522 41.3
$data['id'] 08-08-24 11:00 41 16.6667 0 52.0833 97.8998 41.37
$data['id'] 07-08-24 11:00 43 16.6667 6.28077 54.3478 97.5933 41.86
$data['id'] 06-08-24 11:00 41 16.6667 0 52.2727 97.2575 41.68
$data['id'] 05-08-24 11:00 41 16.6667 0 52.2727 96.8127 41.84
$data['id'] 02-08-24 11:00 53 50 8.90243 56.25 97.7378 41.67
$data['id'] 01-08-24 11:00 59 50 26.9512 60.4167 99.5124 43.36
$data['id'] 31-07-24 11:00 63 50 41.2195 63.0435 99.5605 45.11
$data['id'] 30-07-24 11:00 59 50 27.2517 61.3636 99.9123 45.17
$data['id'] 29-07-24 11:00 46 50 26.6744 59.5238 48.7556 44.22
$data['id'] 26-07-24 11:00 47 50 32.5635 63.0435 46.0335 45.44
$data['id'] 25-07-24 11:00 46 50 30.9469 58.6957 45.8669 44.89
$data['id'] 24-07-24 11:00 44 50 25.0577 54.3478 48.6479 44.62
$data['id'] 23-07-24 11:00 59 50 32.9099 56.8182 99.035 45.33
$data['id'] 22-07-24 11:00 59 50 34.1801 54.7619 97.8987 44.98
$data['id'] 19-07-24 11:00 63 66.6667 36.3742 54.3478 98.33 44.73
$data['id'] 18-07-24 11:00 63 66.6667 31.2933 58.6957 98.2655 45.53
$data['id'] 17-07-24 11:00 52 33.3333 25.7506 54.3478 98.3091 44.86
$data['id'] 16-07-24 11:00 53 33.3333 23.903 59.5238 98.0406 44.45
$data['id'] 15-07-24 11:00 54 33.3333 28.1755 59.5238 98.1618 44.62
$data['id'] 12-07-24 11:00 53 33.3333 22.8637 58.6957 98.8681 44.75
$data['id'] 11-07-24 11:00 51 33.3333 13.9723 58.6957 98.9327 43.71
$data['id'] 10-07-24 11:00 44 16.6667 6.58198 54.3478 99.496 43
$data['id'] 09-07-24 11:00 38 0 0 52.2727 99.8106 42.05
$data['id'] 08-07-24 11:00 33 16.6667 11.4086 54.7619 49.859 43.03
$data['id'] 05-07-24 11:00 51 33.3333 19.092 54.3478 99.7227 43.36
$data['id'] 04-07-24 11:00 49 33.3333 16.4144 50 99.7735 43.47
$data['id'] 03-07-24 11:00 44 16.6667 13.1548 50 99.9107 43.35
$data['id'] 02-07-24 11:00 24 0 5.93712 45.2381 48.3301 42.84
$data['id'] 01-07-24 11:00 25 0 6.51922 45.2381 48.6561 42.92
$data['id'] 28-06-24 11:00 22 0 3.49242 39.5833 47.905 42.32
$data['id'] 27-06-24 11:00 21 0 0.837317 39.5833 46.925 42.02
$data['id'] 26-06-24 11:00 26 16.6667 7.32433 41.3043 39.5714 42.4
$data['id'] 25-06-24 11:00 17 0 0.684947 35.7143 32.1881 44.13
$data['id'] 24-06-24 11:00 26 16.6667 12.3288 43.1818 34.168 45.52
$data['id'] 21-06-24 11:00 25 16.6667 15.2397 39.5833 32.4496 45.5
$data['id'] 20-06-24 11:00 27 16.6667 19.1781 39.5833 32.7967 46.07
$data['id'] 19-06-24 11:00 26 16.6667 18.6644 36.9565 34.3951 45.83
$data['id'] 18-06-24 11:00 18 0 8.90412 34.0909 31.5569 45.93
$data['id'] 17-06-24 11:00 16 0 6.50687 29.5455 31.4919 45.44
$data['id'] 14-06-24 11:00 24 16.6667 18.1507 35.4167 29.2871 45.44
$data['id'] 13-06-24 11:00 27 16.6667 23.8014 39.5833 30.1688 46.21
$data['id'] 12-06-24 11:00 26 16.6667 20.1492 38.6364 30.2514 46.5
$data['id'] 07-06-24 11:00 42 33.3333 45.8209 56.25 35.9374 47.5
$data['id'] 06-06-24 11:00 44 33.3333 44.0299 56.25 42.7243 48.07
$data['id'] 05-06-24 11:00 50 50 50.4178 58.6957 41.5846 48.28
$data['id'] 04-06-24 11:00 48 50 45.8217 56.8182 41.9878 48.63
$data['id'] 03-06-24 11:00 52 50 54.1783 61.3636 42.9852 48.71
$data['id'] 31-05-24 11:00 51 50 52.7855 63.0435 41.763 48.4
$data['id'] 30-05-24 11:00 53 50 54.7354 65.9091 41.5298 48.79
$data['id'] 29-05-24 11:00 54 50 60.1671 65.9091 41.4436 48.8
$data['id'] 28-05-24 11:00 61 66.6667 72.9805 69.0476 38.5221 49.66
$data['id'] 27-05-24 11:00 63 66.6667 74.6518 72.5 39.8747 50.32
$data['id'] 24-05-24 11:00 61 66.6667 68.663 70.4545 41.3367 49.97
$data['id'] 23-05-24 11:00 63 66.6667 70.4736 75 43.6046 50.4
$data['id'] 22-05-24 11:00 64 66.6667 69.9164 70.4545 49.8094 50.02
$data['id'] 21-05-24 11:00 67 66.6667 73.5376 73.8095 56.1811 50.14
$data['id'] 20-05-24 11:00 70 66.6667 81.6156 77.5 56.0627 50.94
$data['id'] 17-05-24 11:00 67 66.6667 76.6017 70.4545 56.1314 50.64
$data['id'] 16-05-24 11:00 65 66.6667 76.3231 75 43.3867 50.54
$data['id'] 15-05-24 11:00 64 66.6667 76.0446 70.4545 43.4073 50.44
$data['id'] 14-05-24 11:00 64 66.6667 75.4874 73.8095 42.2227 50.8
$data['id'] 13-05-24 11:00 56 50 61.0028 72.5 42.4359 50.18
$data['id'] 10-05-24 11:00 51 50 46.7967 65.9091 42.8353 48.89
$data['id'] 09-05-24 11:00 43 33.3333 35.2368 61.3636 43.0032 47.96
$data['id'] 08-05-24 11:00 44 33.3333 40.2507 61.3636 42.8941 47.54
$data['id'] 07-05-24 11:00 40 33.3333 26.8802 59.5238 43.0675 47.25
$data['id'] 06-05-24 11:00 40 33.3333 28.6908 57.5 42.7705 46.93
$data['id'] 03-05-24 11:00 39 33.3333 27.0195 56.8182 42.5786 46.84
$data['id'] 02-05-24 11:00 38 33.3333 24.6518 52.2727 42.3485 46.57
$data['id'] 30-04-24 11:00 38 33.3333 26.6129 50 42.3632 47.18
$data['id'] 29-04-24 11:00 39 33.3333 28.3375 52.5 41.9937 47.24
$data['id'] 26-04-24 11:00 30 16.6667 17.2544 47.7273 40.4187 46.56
$data['id'] 25-04-24 11:00 33 33.3333 14.1304 47.7273 40.7652 45.85
$data['id'] 24-04-24 11:00 36 33.3333 22.2222 50 40.0786 46.31
$data['id'] 23-04-24 11:00 30 33.3333 0 47.5 43.1072 44.89
$data['id'] 22-04-24 11:00 37 33.3333 24.4648 47.5 45.5391 48.64
$data['id'] 19-04-24 11:00 34 33.3333 14.0718 47.7273 44.6364 48.32
$data['id'] 18-04-24 11:00 30 16.6667 6.43708 52.2727 45.5737 48.25
$data['id'] 17-04-24 11:00 29 16.6667 7.78439 50 45.3902 47.24
$data['id'] 16-04-24 11:00 27 16.6667 0 47.5 46.3083 46.77
$data['id'] 15-04-24 11:00 31 16.6667 16.952 47.5 46.8007 48.51
$data['id'] 12-04-24 11:00 34 16.6667 27.5685 47.7273 46.6855 48.33
$data['id'] 11-04-24 11:00 37 33.3333 21.0616 50 46.7759 48.73
$data['id'] 10-04-24 11:00 40 33.3333 28.4247 54.7619 46.6296 48.81
$data['id'] 09-04-24 11:00 35 33.3333 15.0685 47.5 46.799 48.74
$data['id'] 08-04-24 11:02 29 16.6667 5.65065 50 47.1615 48.65
$data['id'] 05-04-24 11:00 31 16.6667 3.93835 57.1429 47.8915 47.81
$data['id'] 04-04-24 11:00 31 16.6667 7.8767 54.5455 47.7808 48.51
$data['id'] 03-04-24 11:00 25 0 0 52.381 47.854 47.6
$data['id'] 02-04-24 11:00 38 50 0 55 48.3807 47.99
$data['id'] 28-03-24 11:00 38 50 0 54.5455 50.4408 48.96
$data['id'] 27-03-24 11:00 54 50 50.0001 54.5455 64.2962 51.72
$data['id'] 26-03-24 11:00 48 50 23.718 54.5455 65.6888 51.52
$data['id'] 25-03-24 11:00 47 50 23.718 52.381 65.066 51.14
$data['id'] 22-03-24 11:00 54 50 53.2051 50 66.7287 51.26
$data['id'] 21-03-24 11:00 53 50 35.8974 54.5455 74.1146 52.16
$data['id'] 20-03-24 11:00 46 50 13.4616 45.4545 75.715 50.9
$data['id'] 19-03-24 11:00 45 50 8.43885 45.4545 76.1968 50.86
$data['id'] 18-03-24 11:00 45 50 7.173 47.619 76.2693 50.4
$data['id'] 15-03-24 11:00 37 33.3333 0.37454 40.9091 76.9991 50.42
$data['id'] 14-03-24 10:00 42 50 8.74523 36.3636 75.5788 50.3
$data['id'] 13-03-24 10:00 43 50 9.20243 40.9091 75.0473 50.98
$data['id'] 12-03-24 10:02 39 33.3333 9.20243 40.9091 75.3201 51.26
$data['id'] 11-03-24 10:02 39 33.3333 10.7362 40.4762 73.6266 50.9
$data['id'] 08-03-24 10:00 37 33.3333 6.39533 38.6364 70.4917 50.84
$data['id'] 07-03-24 10:00 34 33.3333 0 34.0909 71.1654 50.78
$data['id'] 06-03-24 10:00 35 33.3333 2.90699 34.0909 71.1594 50.46
$data['id'] 05-03-24 10:00 29 16.6667 0 34.0909 69.0378 50.42
$data['id'] 04-03-24 12:00 34 33.3333 0 35.7143 66.9536 50.7
$data['id'] 01-03-24 12:00 29 16.6667 0 34.0909 68.3959 51.08
$data['id'] 29-02-24 12:00 34 33.3333 0 39.5833 64.6487 51.04
$data['id'] 28-02-24 12:00 34 33.3333 0 41.3043 63.4129 50.82
$data['id'] 27-02-24 12:00 34 33.3333 0 38.6364 65.2506 51.22
$data['id'] 26-02-24 12:00 30 16.6667 0 38.6364 65.1188 50.82
$data['id'] 23-02-24 12:00 37 33.3333 7.00635 43.75 65.6753 51.54
$data['id'] 22-02-24 12:00 36 33.3333 6.36945 43.75 64.1804 51.56
$data['id'] 21-02-24 12:00 40 50 4.77706 41.3043 64.126 51.42
$data['id'] 20-02-24 12:00 38 50 1.91081 43.1818 57.9987 51.32
$data['id'] 19-02-24 12:00 43 50 11.1465 52.2727 58.8091 51.6
$data['id'] 16-02-24 12:00 45 50 23.5669 47.9167 61.0691 51.58
$data['id'] 15-02-24 12:00 49 50 34.7134 52.0833 62.1108 52.38
$data['id'] 14-02-24 12:00 47 50 26.4331 50 62.1413 52.84
$data['id'] 13-02-24 12:00 53 50 55.0955 52.2727 58.4279 52.6
$data['id'] 12-02-24 12:00 49 50 37.5796 47.7273 61.3808 53.26
$data['id'] 09-02-24 12:00 43 50 16.879 47.9167 59.7493 52.54
$data['id'] 08-02-24 12:00 45 50 24.5223 47.9167 59.9653 52.42
$data['id'] 07-02-24 12:00 46 50 30.2548 45.6522 61.616 52.5
$data['id'] 06-02-24 12:00 47 50 32.1656 47.7273 59.8796 53.52
$data['id'] 05-02-24 12:00 46 50 34.0764 47.7273 52.6277 53
$data['id'] 02-02-24 12:00 41 33.3333 31.5287 47.9167 53.9427 53.12
$data['id'] 01-02-24 12:00 42 33.3333 32.8026 50 54.3823 52.5
$data['id'] 31-01-24 12:00 42 33.3333 34.3949 47.7273 53.6881 52.9
$data['id'] 30-01-24 12:00 35 33.3333 16.5605 40.4762 51.8051 52.22
$data['id'] 29-01-24 12:00 38 33.3333 24.5223 45.2381 51.7062 52.36
$data['id'] 26-01-24 12:00 38 33.3333 26.7516 43.1818 52.3307 52.78
$data['id'] 25-01-24 12:00 31 16.6667 15.2866 40.4762 53.7437 52.24
$data['id'] 24-01-24 12:02 32 16.6667 15.9236 42.5 56.4355 52.32
$data['id'] 23-01-24 12:02 25 0 1.59239 39.4737 59.4936 51.12
$data['id'] 22-01-24 12:00 31 16.6667 6.68793 44.7368 58.8185 51.12
$data['id'] 19-01-24 12:00 27 0 1.60254 50 59.8301 50.94
$data['id'] 18-01-24 12:00 26 0 0 50 57.9652 51.04
$data['id'] 17-01-24 12:00 28 0 1.6287 52.5 57.9163 51.18
$data['id'] 16-01-24 12:00 33 0 27.4359 50 57.1869 51.82
$data['id'] 15-01-24 12:00 41 16.6667 42.0428 50 57.616 52
$data['id'] 12-01-24 12:00 45 16.6667 51.1364 54.7619 57.5664 52.84
$data['id'] 11-01-24 12:00 47 33.3333 46.2754 50 58.6339 52.52
$data['id'] 10-01-24 12:00 41 16.6667 41.535 47.5 58.3659 52.18
$data['id'] 09-01-24 12:00 45 33.3333 46.7269 50 51.1722 53.18
$data['id'] 08-01-24 12:00 59 50 71.5576 50 65.5828 55
$data['id'] 05-01-24 12:00 59 50 70.7578 54.7619 63.6797 54.92
$data['id'] 04-01-24 12:14 63 50 82.0834 54.7619 67.4853 55.72
$data['id'] 03-01-24 12:00 70 66.6667 88.3333 52.5 72.9398 55.26
$data['id'] 02-01-24 12:00 74 66.6667 99.375 55.2632 74.9429 56.82
$data['id'] 29-12-23 12:00 73 66.6667 96.4583 54.7619 74.6748 56.76
$data['id'] 28-12-23 12:00 73 66.6667 97.2917 54.7619 73.8184 56.86
$data['id'] 27-12-23 12:00 73 66.6667 100 54.7619 73.9838 57.18
$data['id'] 22-12-23 12:00 71 66.6667 96.0417 50 73.6167 57.16
$data['id'] 21-12-23 12:00 70 66.6667 94.375 50 71.9949 56.96
$data['id'] 20-12-23 12:00 70 66.6667 97.7035 45.6522 73.0782 57.22
$data['id'] 19-12-23 12:00 75 83.3333 98.9474 47.7273 73.5199 57.12
$data['id'] 18-12-23 12:00 70 66.6667 94.5263 45.2381 74.1412 56.56
$data['id'] 15-12-23 12:00 76 83.3333 100 45.6522 75.8924 57.3
$data['id'] 14-12-23 12:00 75 83.3333 100 45.6522 71.6325 56.74
$data['id'] 13-12-23 12:00 75 83.3333 100 50 69.5397 56.08
$data['id'] 12-12-23 12:00 75 83.3333 100 50 69.0104 56.22
$data['id'] 11-12-23 12:00 74 83.3333 100 50 66.2964 56.34
$data['id'] 08-12-23 12:00 71 66.6667 100 50 68.0037 56.02
$data['id'] 07-12-23 12:00 71 66.6667 100 53.1746 67.1234 54.92
$data['id'] 06-12-23 12:00 70 66.6667 98.8919 53.1788 63.6513 54.98
$data['id'] 05-12-23 12:00 70 66.6667 100 53.2493 63.6097 54.78
$data['id'] 04-12-23 12:00 70 66.6667 100 53.3201 63.0562 54.8

Nota: De weergegeven waardes zijn genormaliseerd. De genormaliseerde waarden zijn zo ingesteld dat een waarde van 50 een neutraal marktsentiment aangeeft. Waarden boven de 50 wijzen op een positief (bullish) sentiment (hebzucht), terwijl waarden onder de 50 een negatief (bearish) sentiment (angst) aanduiden.