Back INGA.AS Fear & Greed Index

Image

INGA.AS Stock Data

Download INGA.AS GF Data (.xslx)
id Date GF Index Momentum Price Strength Price Breadth Volatility Close Price
$data['id'] 11-02-25 11:00 56 50 83.848 52.2727 38.1475 16.072
$data['id'] 10-02-25 11:00 55 50 81.0748 52.2727 38.3789 15.85
$data['id'] 07-02-25 11:00 59 50 88.7851 52.0833 45.7829 15.916
$data['id'] 06-02-25 11:00 52 50 63.0841 47.9167 50.35 15.912
$data['id'] 05-02-25 11:00 65 66.6667 94.0421 52.2727 47.8824 15.91
$data['id'] 04-02-25 11:00 41 66.6667 -1 52.2727 46.4257 16.082
$data['id'] 03-02-25 11:00 61 66.6667 79.4393 52.2727 46.5602 15.808
$data['id'] 31-01-25 11:00 69 83.3333 97.294 52.2727 44.0829 16.056
$data['id'] 30-01-25 11:00 69 83.3333 96.3529 54.3478 44.1964 16.15
$data['id'] 29-01-25 11:00 63 66.6667 90.7204 52.2727 43.8458 16.124
$data['id'] 28-01-25 11:00 63 66.6667 92.9182 52.5 43.4804 16.006
$data['id'] 27-01-25 11:00 67 66.6667 100 59.5238 43.048 16.018
$data['id'] 24-01-25 11:00 68 66.6667 100 64.2857 43.2105 16.014
$data['id'] 23-01-25 11:00 65 66.6667 90.8521 64.2857 40.9465 16.06
$data['id'] 22-01-25 11:00 64 66.6667 89.7243 62.5 38.5217 15.734
$data['id'] 21-01-25 11:00 77 100 100 71.0526 39.9897 15.994
$data['id'] 20-01-25 11:00 73 83.3333 100 71.0526 39.8803 16.046
$data['id'] 17-01-25 11:00 78 100 100 73.8095 39.2288 15.848
$data['id'] 16-01-25 11:00 69 66.6667 100 67.5 43.0309 15.912
$data['id'] 15-01-25 11:00 65 66.6667 88.102 67.5 40.0071 15.8
$data['id'] 14-01-25 11:00 65 66.6667 89.9433 65.7895 41.4559 15.62
$data['id'] 13-01-25 11:00 52 50 57.7903 60.5263 41.4541 15.548
$data['id'] 10-01-25 11:00 50 50 52.9745 59.5238 39.7471 15.072
$data['id'] 09-01-25 11:00 47 50 43.6261 54.7619 39.7773 15.15
$data['id'] 08-01-25 11:00 50 50 54.1076 57.5 39.0071 15.09
$data['id'] 07-01-25 11:00 53 50 62.4646 60.5263 39.2949 15.344
$data['id'] 06-01-25 11:00 51 50 47.592 60.5263 46.6365 15.364
$data['id'] 03-01-25 11:00 54 50 51.8807 67.5 46.9305 15.148
$data['id'] 02-01-25 11:00 49 50 37.4838 64.2857 47.4908 15.182
$data['id'] 31-12-24 11:00 52 50 43.7258 67.5 47.3272 15.13
$data['id'] 30-12-24 11:00 51 50 43.3376 65.7895 47.5449 15.038
$data['id'] 24-12-24 11:00 46 50 27.7849 61.3636 47.2599 14.834
$data['id'] 23-12-24 11:00 44 50 18.3099 59.5238 48.695 14.721
$data['id'] 20-12-24 11:00 41 50 15.493 50 49.4534 14.706
$data['id'] 19-12-24 11:00 41 50 23.9437 45.6522 47.8985 14.923
$data['id'] 18-12-24 11:00 41 50 21.2159 45.6522 47.7943 14.816
$data['id'] 17-12-24 11:00 40 50 21.5367 43.1818 46.9407 14.695
$data['id'] 16-12-24 11:00 43 50 24.3306 50 47.7809 14.802
$data['id'] 13-12-24 11:00 42 50 19.5576 54.3478 47.6071 14.804
$data['id'] 12-12-24 11:00 42 50 27.7066 50 41.9734 14.614
$data['id'] 11-12-24 11:00 45 50 41.7928 50 41.9826 15.036
$data['id'] 10-12-24 11:00 45 50 33.652 50 47.6665 15.156
$data['id'] 09-12-24 11:00 45 50 32.696 50 47.5266 15.161
$data['id'] 06-12-24 11:00 40 33.3333 32.5646 50 47.2078 15.025
$data['id'] 05-12-24 11:00 37 33.3333 24.3542 50 40.4929 15.15
$data['id'] 04-12-24 11:00 33 33.3333 14.0221 45.6522 39.0977 14.728
$data['id'] 03-12-24 11:00 34 33.3333 13.0074 43.1818 46.5641 14.646
$data['id'] 02-12-24 11:00 31 33.3333 7.02222 40.4762 45.755 14.564
$data['id'] 29-11-24 11:00 33 33.3333 7.1111 47.9167 46.5814 14.676
$data['id'] 28-11-24 11:00 32 33.3333 6.22224 43.75 46.742 14.632
$data['id'] 27-11-24 11:00 20 0 0 36.9565 46.496 14.456
$data['id'] 26-11-24 11:00 25 16.6667 0 38.6364 46.3269 14.464
$data['id'] 25-11-24 11:00 26 16.6667 0 43.1818 46.2865 14.65
$data['id'] 22-11-24 11:00 40 16.6667 0 45.6522 99.9589 14.67
$data['id'] 21-11-24 11:00 28 16.6667 6.51117 43.75 48.369 14.846
$data['id'] 20-11-24 11:00 33 16.6667 19.242 50 48.3763 14.92
$data['id'] 19-11-24 11:00 42 16.6667 5.44215 47.7273 99.8729 14.968
$data['id'] 18-11-24 11:00 33 16.6667 21.4771 47.7273 48.2144 15.098
$data['id'] 15-11-24 11:00 31 16.6667 16.5209 43.75 47.4153 14.958
$data['id'] 14-11-24 11:00 22 0 1.94363 43.75 43.1931 14.808
$data['id'] 13-11-24 11:00 25 16.6667 0 41.3043 43.0337 14.578
$data['id'] 12-11-24 11:00 30 33.3333 4.46011 43.1818 41.2133 14.842
$data['id'] 11-11-24 11:00 32 33.3333 5.86851 47.7273 41.148 15.112
$data['id'] 08-11-24 11:00 25 16.6667 0 43.75 40.1702 14.95
$data['id'] 07-11-24 11:00 26 16.6667 0.397322 47.9167 40.9256 15.008
$data['id'] 06-11-24 11:00 33 50 3.44827 45.6522 33.0171 15.156
$data['id'] 05-11-24 11:00 39 50 21.5517 47.7273 38.037 15.62
$data['id'] 04-11-24 11:00 41 50 26.8966 52.2727 38.0862 15.882
$data['id'] 01-11-24 11:00 38 50 16.2069 50 38.4609 15.766
$data['id'] 31-10-24 11:00 36 50 9.48273 45.8333 39.6896 15.684
$data['id'] 30-10-24 11:00 33 50 2.41378 43.4783 39.957 15.536
$data['id'] 29-10-24 11:00 43 50 35.6897 50 39.7079 15.728
$data['id'] 28-10-24 11:00 34 33.3333 14.6552 47.619 41.2675 15.768
$data['id'] 25-10-24 11:00 39 50 18.6207 43.4783 44.1732 15.698
$data['id'] 24-10-24 11:00 39 50 24.3324 43.4783 41.9948 15.532
$data['id'] 23-10-24 11:00 42 50 27.8846 45.4545 48.499 15.598
$data['id'] 22-10-24 11:00 43 50 28.2967 45.4545 48.4169 15.66
$data['id'] 21-10-24 11:00 50 50 52.4259 52.381 47.007 15.906
$data['id'] 18-10-24 11:00 50 50 50.2584 54.5455 46.7639 15.943
$data['id'] 17-10-24 11:00 54 50 61.2403 56.5217 48.9814 15.99
$data['id'] 16-10-24 11:00 51 50 53.1512 54.5455 48.2377 15.88
$data['id'] 15-10-24 11:00 52 50 59.2437 54.5455 47.6501 16.028
$data['id'] 14-10-24 11:00 48 33.3333 57.8781 52.381 48.7176 15.93
$data['id'] 11-10-24 11:00 47 33.3333 52.9412 56.5217 47.7251 15.912
$data['id'] 10-10-24 11:00 46 33.3333 47.4059 56.5217 48.4977 15.778
$data['id'] 09-10-24 11:00 55 33.3333 37.0117 52.1739 99.7437 15.654
$data['id'] 08-10-24 11:00 52 50 61.9231 54.5455 44.3437 16.034
$data['id'] 07-10-24 11:00 50 50 54.5211 52.381 44.2386 16.124
$data['id'] 04-10-24 11:00 50 50 49.9552 56.5217 44.5487 16.014
$data['id'] 03-10-24 11:00 43 33.3333 43.9003 52.1739 45.6082 15.766
$data['id'] 02-10-24 11:00 51 50 56.1144 54.3478 44.8344 15.932
$data['id'] 01-10-24 11:00 51 50 62.1856 52.2727 41.8924 15.952
$data['id'] 30-09-24 11:00 54 50 71.5525 56.8182 40.6179 16.284
$data['id'] 27-09-24 11:00 57 50 78.144 60.4167 39.9089 16.512
$data['id'] 26-09-24 11:00 56 50 72.333 64.5833 37.1211 16.582
$data['id'] 25-09-24 11:00 54 50 68.3435 63.0435 35.9458 16.29
$data['id'] 24-09-24 11:00 57 50 78.7511 65.9091 33.7963 16.596
$data['id'] 23-09-24 11:00 55 50 68.6036 65.9091 38.1989 16.518
$data['id'] 20-09-24 11:00 57 50 80.4857 64.5833 33.3314 16.662
$data['id'] 19-09-24 11:00 56 50 77.1899 64.5833 32.6726 16.666
$data['id'] 18-09-24 11:00 55 50 75.7155 63.0435 32.5636 16.492
$data['id'] 17-09-24 11:00 53 50 71.8994 61.3636 32.4276 16.438
$data['id'] 16-09-24 11:00 52 50 68.4302 61.3636 31.7547 16.29
$data['id'] 13-09-24 11:00 54 50 67.823 68.75 31.0476 16.426
$data['id'] 12-09-24 11:00 54 50 66.4354 68.75 32.0907 16.22
$data['id'] 11-09-24 11:00 52 50 55.6809 67.3913 36.1033 16.034
$data['id'] 10-09-24 11:00 54 50 63.0529 70.4545 34.1113 15.986
$data['id'] 09-09-24 11:00 52 50 54.7268 70.4545 33.198 16.174
$data['id'] 06-09-24 11:00 51 50 54.4666 68.75 31.9391 15.962
$data['id'] 05-09-24 11:00 53 50 62.4458 68.75 31.3477 16.176
$data['id'] 04-09-24 11:00 51 50 54.9002 67.3913 32.0873 16.11
$data['id'] 03-09-24 11:00 59 66.6667 66.7823 70.4545 33.9821 16.208
$data['id'] 02-09-24 11:00 60 66.6667 71.379 70.4545 35.1532 16.416
$data['id'] 30-08-24 11:00 62 66.6667 70.5985 60.4167 50.8279 16.388
$data['id'] 29-08-24 11:00 59 66.6667 64.7875 56.25 51.2309 16.314
$data['id'] 28-08-24 11:00 59 66.6667 61.5785 58.6957 52.0029 16.12
$data['id'] 27-08-24 11:00 69 66.6667 58.0225 56.8182 98.0155 16.152
$data['id'] 26-08-24 11:00 67 66.6667 53.7728 52.2727 98.0555 16
$data['id'] 23-08-24 11:00 65 66.6667 50.8239 47.9167 98.0609 15.954
$data['id'] 22-08-24 11:00 56 33.3333 47.268 47.9167 98.0642 15.788
$data['id'] 21-08-24 11:00 54 33.3333 41.5438 45.6522 98.1118 15.802
$data['id'] 20-08-24 11:00 51 16.6667 44.2324 47.7273 98.104 15.8
$data['id'] 19-08-24 11:00 53 16.6667 48.569 52.2727 98.0685 15.924
$data['id'] 16-08-24 11:00 50 16.6667 41.2836 47.9167 97.9965 15.702
$data['id'] 15-08-24 11:00 47 16.6667 25.1518 47.9167 98.4424 15.72
$data['id'] 14-08-24 11:00 44 16.6667 23.5039 41.3043 98.4509 15.336
$data['id'] 13-08-24 11:00 44 16.6667 21.3356 43.1818 98.2597 15.302
$data['id'] 12-08-24 11:00 42 16.6667 18.3868 38.6364 98.2496 15.228
$data['id'] 09-08-24 11:00 43 16.6667 20.3816 39.5833 98.2098 15.198
$data['id'] 08-08-24 11:00 36 0 11.1882 35.4167 98.2203 15.11
$data['id'] 07-08-24 11:00 36 0 10.3209 36.9565 98.5223 15.194
$data['id'] 06-08-24 11:00 33 0 0 34.0909 98.6861 14.82
$data['id'] 05-08-24 11:00 38 16.6667 0 38.6364 98.2689 14.954
$data['id'] 02-08-24 11:00 44 50 39.3629 43.75 44.8986 15.69
$data['id'] 01-08-24 11:00 46 50 58.3618 43.75 35.1647 15.95
$data['id'] 31-07-24 11:00 51 50 80.7737 45.6522 28.4303 16.738
$data['id'] 30-07-24 11:00 52 50 81.57 47.7273 29.8206 16.876
$data['id'] 29-07-24 11:00 61 66.6667 96.1319 54.7619 27.8341 16.846
$data['id'] 26-07-24 11:00 64 66.6667 96.3594 58.6957 34.4777 17.02
$data['id'] 25-07-24 11:00 60 66.6667 83.0489 54.3478 37.0643 16.932
$data['id'] 24-07-24 11:00 63 66.6667 95.7907 58.6957 33.7698 17.018
$data['id'] 23-07-24 11:00 65 66.6667 100 61.3636 33.2486 17.086
$data['id'] 22-07-24 11:00 64 66.6667 100 59.5238 32.0571 17.052
$data['id'] 19-07-24 11:00 62 66.6667 90.7205 58.6957 34.3578 16.81
$data['id'] 18-07-24 11:00 74 100 100 63.0435 34.9391 16.996
$data['id'] 17-07-24 11:00 69 83.3333 100 63.0435 33.3477 16.97
$data['id'] 16-07-24 11:00 63 66.6667 93.4722 59.5238 35.4441 16.72
$data['id'] 15-07-24 11:00 70 83.3333 100 64.2857 34.5944 16.7
$data['id'] 12-07-24 11:00 66 66.6667 100 58.6957 41.1384 16.786
$data['id'] 11-07-24 11:00 68 66.6667 100 63.0435 44.4178 16.686
$data['id'] 10-07-24 11:00 62 50 94.198 54.3478 50.3982 16.686
$data['id'] 09-07-24 11:00 69 66.6667 100 61.3636 50.4013 16.526
$data['id'] 08-07-24 11:00 69 66.6667 100 59.5238 50.6807 16.566
$data['id'] 05-07-24 11:00 64 50 99.3744 58.6957 50.6783 16.456
$data['id'] 04-07-24 11:00 70 66.6667 100 63.0435 50.7001 16.636
$data['id'] 03-07-24 11:00 67 66.6667 93.3545 58.6957 50.7428 16.46
$data['id'] 02-07-24 11:00 62 50 88.3967 59.5238 51.0024 16.274
$data['id'] 01-07-24 11:00 61 50 84.4936 59.5238 50.8733 16.372
$data['id'] 28-06-24 11:00 58 50 72.6793 60.4167 50.6783 15.93
$data['id'] 27-06-24 11:00 68 50 63.1857 60.4167 99.384 15.938
$data['id'] 26-06-24 11:00 57 50 65.0844 63.0435 50.7434 15.816
$data['id'] 25-06-24 11:00 55 50 62.8692 59.5238 50.9579 15.852
$data['id'] 24-06-24 11:00 64 50 52.2152 56.8182 99.3195 15.83
$data['id'] 21-06-24 11:00 55 33.3333 42.0886 47.9167 99.3265 15.516
$data['id'] 20-06-24 11:00 57 33.3333 48.5232 47.9167 99.4766 15.662
$data['id'] 19-06-24 11:00 63 50 57.384 45.6522 99.5397 15.58
$data['id'] 18-06-24 11:00 53 50 66.0338 47.7273 50.5644 15.796
$data['id'] 17-06-24 11:00 58 33.3333 51.1604 47.7273 99.8502 15.788
$data['id'] 14-06-24 11:00 40 33.3333 35.1266 47.9167 47.2514 15.312
$data['id'] 13-06-24 11:00 51 50 61.7089 52.0833 43.2297 15.522
$data['id'] 12-06-24 11:00 54 50 74.3671 52.2727 40.5385 16.082
$data['id'] 07-06-24 11:00 61 50 97.8902 56.25 42.4424 16.39
$data['id'] 06-06-24 11:00 56 50 78.2199 56.25 39.6645 16.322
$data['id'] 05-06-24 11:00 55 50 77.3126 54.3478 39.5806 16.128
$data['id'] 04-06-24 11:00 60 66.6667 85.5585 52.2727 36.0502 16.088
$data['id'] 03-06-24 11:00 64 66.6667 100 56.8182 35.4014 16.46
$data['id'] 31-05-24 11:00 63 66.6667 95.6942 58.6957 34.4436 16.334
$data['id'] 30-05-24 11:00 61 66.6667 89.3057 56.8182 33.4858 16.31
$data['id'] 29-05-24 11:00 65 66.6667 88.5246 56.8182 51.1827 16.132
$data['id'] 28-05-24 11:00 66 66.6667 89.4613 59.5238 51.1213 16.334
$data['id'] 27-05-24 11:00 66 66.6667 89.5394 57.5 51.1333 16.194
$data['id'] 24-05-24 11:00 67 66.6667 90.9531 61.3636 51.1884 16.352
$data['id'] 23-05-24 11:00 68 66.6667 92.8339 61.3636 51.1429 16.442
$data['id'] 22-05-24 11:00 71 66.6667 98.6932 65.9091 53.1493 16.458
$data['id'] 21-05-24 11:00 77 83.3333 100 73.8095 53.2028 16.558
$data['id'] 20-05-24 11:00 77 83.3333 100 72.5 53.2102 16.578
$data['id'] 17-05-24 11:00 77 83.3333 97.929 75 53.1296 16.496
$data['id'] 16-05-24 11:00 73 83.3333 92.9386 70.4545 46.7905 16.208
$data['id'] 15-05-24 11:00 74 83.3333 98.175 70.4545 46.8811 16.17
$data['id'] 14-05-24 11:00 71 66.6667 100 73.8095 46.6161 16.444
$data['id'] 13-05-24 11:00 71 66.6667 100 72.5 46.6165 16.176
$data['id'] 10-05-24 11:00 73 83.3333 98.2446 65.9091 46.0558 16.054
$data['id'] 09-05-24 11:00 74 83.3333 97.9049 70.4545 45.8804 16.05
$data['id'] 08-05-24 11:00 73 83.3333 99.547 65.9091 45.8776 16.014
$data['id'] 07-05-24 11:00 74 83.3333 100 69.0476 45.8603 16.154
$data['id'] 06-05-24 11:00 74 83.3333 100 67.5 45.8321 16.02
$data['id'] 03-05-24 11:00 73 83.3333 100 65.9091 45.7857 15.884
$data['id'] 02-05-24 11:00 64 50 97.6882 65.9091 46.2003 15.834
$data['id'] 30-04-24 11:00 53 33.3333 71.8768 59.5238 47.5199 14.866
$data['id'] 29-04-24 11:00 56 33.3333 78.5138 67.5 47.4746 14.854
$data['id'] 26-04-24 11:00 56 33.3333 73.3866 70.4545 47.356 14.9
$data['id'] 25-04-24 11:00 55 33.3333 69.6174 70.4545 47.3953 14.68
$data['id'] 24-04-24 11:00 60 50 76.7353 69.0476 48.0591 14.642
$data['id'] 23-04-24 11:00 70 66.6667 93.3403 72.5 49.4531 15.646
$data['id'] 22-04-24 11:00 67 66.6667 84.5592 67.5 49.445 15.334
$data['id'] 19-04-24 11:00 65 66.6667 81.4293 65.9091 49.3653 15.238
$data['id'] 18-04-24 11:00 66 66.6667 80.5947 70.4545 49.4417 15.14
$data['id'] 17-04-24 11:00 66 66.6667 80.3338 69.0476 49.2089 14.94
$data['id'] 16-04-24 11:00 64 66.6667 75.8477 67.5 49.5395 14.718
$data['id'] 15-04-24 11:00 67 66.6667 82.1596 72.5 49.7555 15.028
$data['id'] 12-04-24 11:00 69 66.6667 87.6891 65.9091 56.856 14.95
$data['id'] 11-04-24 11:00 85 100 100 75 65.1808 15.466
$data['id'] 10-04-24 11:00 82 100 100 73.8095 57.0893 15.808
$data['id'] 09-04-24 11:00 84 100 100 77.5 59.6072 15.676
$data['id'] 08-04-24 11:02 84 100 100 77.5 60.2071 15.746
$data['id'] 05-04-24 11:00 84 100 97.8865 78.5714 59.9429 15.57
$data['id'] 04-04-24 11:00 86 100 100 84.0909 61.6869 15.67
$data['id'] 03-04-24 11:00 86 100 100 83.3333 61.7455 15.518
$data['id'] 02-04-24 11:00 85 100 100 82.5 60.1287 15.32
$data['id'] 28-03-24 11:00 85 100 100 79.5455 61.4459 15.246
$data['id'] 27-03-24 11:00 84 100 100 79.5455 60.2751 14.908
$data['id'] 26-03-24 11:00 85 100 100 79.5455 61.044 14.932
$data['id'] 25-03-24 11:00 84 100 100 76.1905 60.9912 14.698
$data['id'] 22-03-24 11:00 83 100 100 75 59.3807 14.666
$data['id'] 21-03-24 11:00 83 100 97.3118 75 59.83 14.488
$data['id'] 20-03-24 11:00 81 100 95.2381 70.4545 60.808 14.382
$data['id'] 19-03-24 11:00 84 100 100 75 62.6797 14.504
$data['id'] 18-03-24 11:00 84 100 100 73.8095 62.3289 14.27
$data['id'] 15-03-24 11:00 84 100 98.6339 75 62.6533 14.1
$data['id'] 14-03-24 10:00 85 100 99.5446 79.5455 63.6728 14.006
$data['id'] 13-03-24 10:00 87 100 100 84.0909 64.9217 14.11
$data['id'] 12-03-24 10:02 87 100 100 79.5455 71.9157 14.068
$data['id'] 11-03-24 10:02 87 100 100 78.5714 72.225 13.69
$data['id'] 08-03-24 10:00 79 83.3333 85.5658 79.5455 71.1735 13.498
$data['id'] 07-03-24 10:00 72 66.6667 72.5173 79.5455 71.9759 13.344
$data['id'] 06-03-24 10:00 72 66.6667 76.7898 75 71.8875 13.17
$data['id'] 05-03-24 10:00 68 66.6667 64.4342 75 66.7165 13.122
$data['id'] 04-03-24 12:00 67 66.6667 61.6972 73.8095 67.8049 13.028
$data['id'] 01-03-24 12:00 57 50 45.9127 65.9091 69.4584 12.744
$data['id'] 29-02-24 12:00 55 50 40.8591 64.5833 67.6149 12.674
$data['id'] 28-02-24 12:00 56 66.6667 43.282 67.3913 48.9965 12.776
$data['id'] 27-02-24 12:00 53 66.6667 35.793 61.3636 49.0266 12.698
$data['id'] 26-02-24 12:00 49 50 37.6652 61.3636 49.014 12.618
$data['id'] 23-02-24 12:00 49 50 38.6564 60.4167 49.0381 12.704
$data['id'] 22-02-24 12:00 50 50 41.8502 62.5 48.9722 12.708
$data['id'] 21-02-24 12:00 50 50 40.6388 60.8696 49.002 12.624
$data['id'] 20-02-24 12:00 40 16.6667 31.3877 63.6364 49.1025 12.68
$data['id'] 19-02-24 12:00 38 16.6667 25.4405 63.6364 49.1452 12.466
$data['id'] 16-02-24 12:00 38 16.6667 26.8722 62.5 49.0666 12.408
$data['id'] 15-02-24 12:00 37 16.6667 24.6696 58.3333 49.0695 12.372
$data['id'] 14-02-24 12:00 35 16.6667 20.2643 56.5217 49.106 12.274
$data['id'] 13-02-24 12:00 36 16.6667 22.1366 59.0909 49.1014 12.268
$data['id'] 12-02-24 12:00 33 16.6667 15.5287 54.5455 49.1758 12.268
$data['id'] 09-02-24 12:00 25 0 4.51541 50 49.3596 12.078
$data['id'] 08-02-24 12:00 29 16.6667 6.60792 45.8333 49.2805 11.958
$data['id'] 07-02-24 12:00 23 0 0 43.4783 49.4375 11.912
$data['id'] 06-02-24 12:00 33 33.3333 7.13422 45.4545 49.4566 12.17
$data['id'] 05-02-24 12:00 28 16.6667 2.47075 45.4545 49.4642 12.086
$data['id'] 02-02-24 12:00 25 16.6667 0 37.5 49.5222 12.214
$data['id'] 01-02-24 12:00 26 16.6667 0 39.1304 48.2975 12.35
$data['id'] 31-01-24 12:00 56 50 63.2303 40.9091 72.6343 13.186
$data['id'] 30-01-24 12:00 52 50 46.5636 38.0952 75.3087 13.09
$data['id'] 29-01-24 12:00 51 50 48.9796 33.3333 75.4975 13.082
$data['id'] 26-01-24 12:00 53 50 56.8493 31.8182 75.8031 13.112
$data['id'] 25-01-24 12:00 52 50 55.1899 28.5714 76.6309 13
$data['id'] 24-01-24 12:02 52 50 51.7024 30 78.0693 13.016
$data['id'] 23-01-24 12:02 45 33.3333 44.2623 23.6842 79.5262 12.874
$data['id'] 22-01-24 12:00 46 33.3333 43.7579 28.9474 80.2119 12.854
$data['id'] 19-01-24 12:00 44 33.3333 38.5876 26.1905 81.8335 12.768
$data['id'] 18-01-24 12:00 44 33.3333 40.1009 21.4286 81.4011 12.696
$data['id'] 17-01-24 12:00 40 16.6667 42.6229 17.5 83.2597 12.7
$data['id'] 16-01-24 12:00 40 16.6667 46.5164 18.4211 80.5121 12.728
$data['id'] 15-01-24 12:00 48 33.3333 56.6598 23.6842 81.0522 12.892
$data['id'] 12-01-24 12:00 49 33.3333 59.9385 26.1905 79.4534 12.884
$data['id'] 11-01-24 12:00 51 33.3333 61.8853 30.9524 81.1886 12.828
$data['id'] 10-01-24 12:00 50 33.3333 59.8361 27.5 81.3535 12.948
$data['id'] 09-01-24 12:00 52 33.3333 66.291 28.9474 79.4911 13.01
$data['id'] 08-01-24 12:00 59 50 72.1312 34.2105 80.6556 13.214
$data['id'] 05-01-24 12:00 59 50 68.5451 45.2381 75.747 13.256
$data['id'] 04-01-24 12:14 53 33.3333 62.0902 50 68.7926 13.262
$data['id'] 03-01-24 12:00 65 50 82.7869 52.5 78.1923 13.36
$data['id'] 02-01-24 12:00 72 66.6667 88.9344 55.2632 79.3506 13.44
$data['id'] 29-12-23 12:00 74 66.6667 89.0369 64.2857 79.0262 13.514
$data['id'] 28-12-23 12:00 77 66.6667 93.5451 69.0476 80.1078 13.548
$data['id'] 27-12-23 12:00 81 83.3333 94.1599 69.0476 80.5374 13.656
$data['id'] 22-12-23 12:00 80 83.3333 94.6721 63.0435 79.9132 13.582
$data['id'] 21-12-23 12:00 73 66.6667 89.5492 58.6957 78.7819 13.568
$data['id'] 20-12-23 12:00 74 66.6667 91.9057 63.0435 77.6982 13.636
$data['id'] 19-12-23 12:00 87 100 99.4877 70.4545 78.8048 13.676
$data['id'] 18-12-23 12:00 88 100 100 73.8095 79.2729 13.73
$data['id'] 15-12-23 12:00 86 100 100 67.3913 78.4178 13.7
$data['id'] 14-12-23 12:00 85 100 100 67.3913 76.4792 13.618
$data['id'] 13-12-23 12:00 85 100 98.5792 67.3913 77.9386 13.57
$data['id'] 12-12-23 12:00 85 100 99.7766 65.9091 77.6081 13.638
$data['id'] 11-12-23 12:00 84 100 98.8385 64.2857 76.1638 13.556
$data['id'] 08-12-23 12:00 86 100 100 67.3913 76.8491 13.51
$data['id'] 07-12-23 12:00 74 66.6667 99.3252 53.3069 76.9543 13.316
$data['id'] 06-12-23 12:00 74 66.6667 100 53.3775 78.1846 13.27
$data['id'] 05-12-23 12:00 70 50 100 53.3157 78.3226 13.056
$data['id'] 04-12-23 12:00 70 50 100 53.2537 76.9937 12.944

Nota: De weergegeven waardes zijn genormaliseerd. De genormaliseerde waarden zijn zo ingesteld dat een waarde van 50 een neutraal marktsentiment aangeeft. Waarden boven de 50 wijzen op een positief (bullish) sentiment (hebzucht), terwijl waarden onder de 50 een negatief (bearish) sentiment (angst) aanduiden.