Back EXO.AS Fear & Greed Index

Image

EXO.AS Stock Data

Download EXO.AS GF Data (.xslx)
id Date GF Index Momentum Price Strength Price Breadth Volatility Close Price
$data['id'] 11-02-25 11:00 54 50 64.5569 47.7273 56.6457 93.75
$data['id'] 10-02-25 11:00 53 50 58.8608 47.7273 56.5704 93
$data['id'] 07-02-25 11:00 54 50 60 52.0833 57.5181 91.85
$data['id'] 06-02-25 11:00 53 50 57.6471 47.9167 57.632 92.25
$data['id'] 05-02-25 11:00 49 50 45.8824 47.7273 55.1881 91.55
$data['id'] 04-02-25 11:00 53 50 17.6471 47.7273 98.8385 92.05
$data['id'] 03-02-25 11:00 47 50 0.588271 47.7273 93.5026 88.9
$data['id'] 31-01-25 11:00 50 50 52.3529 47.7273 50.2357 91.7
$data['id'] 30-01-25 11:00 44 50 32.3529 50 45.4013 91.3
$data['id'] 29-01-25 11:00 45 50 32.9412 52.2727 45.3699 89.9
$data['id'] 28-01-25 11:00 44 50 31.7647 52.5 44.9189 89.9
$data['id'] 27-01-25 11:00 40 50 22.9411 45.2381 45.5815 89.75
$data['id'] 24-01-25 11:00 45 50 31.1765 54.7619 45.2823 89.95
$data['id'] 23-01-25 11:00 43 50 28.2353 50 45.772 90.15
$data['id'] 22-01-25 11:00 50 50 48.2353 57.5 45.466 90.8
$data['id'] 21-01-25 11:00 48 50 47.0588 55.2632 42.8902 90.85
$data['id'] 20-01-25 11:00 48 50 45.8824 50 47.0493 91.85
$data['id'] 17-01-25 11:00 42 33.3333 39.8907 52.381 44.834 91.6
$data['id'] 16-01-25 11:00 49 33.3333 26.9608 45 93.4084 90.1
$data['id'] 15-01-25 11:00 44 33.3333 6.37257 42.5 96.6718 89.85
$data['id'] 14-01-25 11:00 46 33.3333 7.84317 47.3684 96.5991 88.05
$data['id'] 13-01-25 11:00 44 33.3333 7.72355 42.1053 96.7682 88.1
$data['id'] 10-01-25 11:00 46 33.3333 16.6667 38.0952 96.88 89.55
$data['id'] 09-01-25 11:00 42 33.3333 11.3821 28.5714 97.116 89.45
$data['id'] 08-01-25 11:00 45 33.3333 16.6667 35 96.9506 89
$data['id'] 07-01-25 11:00 40 16.6667 15.8536 34.2105 96.889 89.45
$data['id'] 06-01-25 11:00 39 16.6667 10.1626 31.5789 97.7609 89.2
$data['id'] 03-01-25 11:00 39 16.6667 4.66104 37.5 99.0245 87.5
$data['id'] 02-01-25 11:00 38 16.6667 0 38.0952 98.9804 88.65
$data['id'] 31-12-24 11:00 39 16.6667 2.96609 40 98.9271 88.55
$data['id'] 30-12-24 11:00 39 16.6667 3.81353 36.8421 98.7072 88.4
$data['id'] 24-12-24 11:00 39 16.6667 5.95742 36.3636 98.5311 88
$data['id'] 23-12-24 11:00 32 0 0 33.3333 97.3147 88.15
$data['id'] 20-12-24 11:00 34 0 0 41.3043 96.3081 88.2
$data['id'] 19-12-24 11:00 38 16.6667 0 41.3043 96.5932 88.35
$data['id'] 18-12-24 11:00 34 0 0.473962 41.3043 96.125 89.9
$data['id'] 17-12-24 11:00 39 16.6667 1.02039 43.1818 96.0175 89.45
$data['id'] 16-12-24 11:00 28 33.3333 0 40.4762 41.222 90.15
$data['id'] 13-12-24 11:00 37 33.3333 25.8993 50 40.9201 93.9
$data['id'] 12-12-24 11:00 38 33.3333 23.741 54.3478 43.3741 94.2
$data['id'] 11-12-24 11:00 37 33.3333 17.2662 50 48.0682 94.4
$data['id'] 10-12-24 11:00 52 33.3333 25.1749 54.7619 97.0654 94.55
$data['id'] 09-12-24 11:00 56 33.3333 37.063 59.5238 97.3658 95.3
$data['id'] 06-12-24 11:00 56 33.3333 37.7623 58.6957 96.8478 95.55
$data['id'] 05-12-24 11:00 53 33.3333 24.4755 58.6957 96.8645 95.1
$data['id'] 04-12-24 11:00 51 33.3333 24.4755 54.3478 93.9555 94.2
$data['id'] 03-12-24 11:00 48 33.3333 12.5874 52.2727 94.2268 93.5
$data['id'] 02-12-24 11:00 42 33.3333 0 50 87.6042 92.9
$data['id'] 29-11-24 11:00 39 16.6667 5.03595 47.9167 88.7977 93.8
$data['id'] 28-11-24 11:00 47 33.3333 15.1079 52.0833 88.3618 93.5
$data['id'] 27-11-24 11:00 39 16.6667 4.31648 50 88.5029 93.85
$data['id'] 26-11-24 11:00 49 33.3333 24.4604 52.2727 87.5358 94.15
$data['id'] 25-11-24 11:00 54 33.3333 45.3237 52.2727 87.7004 96.8
$data['id'] 22-11-24 11:00 42 16.6667 8.63308 54.3478 89.2563 95.2
$data['id'] 21-11-24 11:00 39 16.6667 0 52.0833 89.5061 94.4
$data['id'] 20-11-24 11:00 45 16.6667 17.9856 58.6957 89.1477 93.25
$data['id'] 19-11-24 11:00 40 16.6667 1.43883 56.8182 88.4363 94.15
$data['id'] 18-11-24 11:00 43 16.6667 12.2302 56.8182 89.2869 94.6
$data['id'] 15-11-24 11:00 46 16.6667 23.7409 56.25 89.7363 93.65
$data['id'] 14-11-24 11:00 45 16.6667 15.1079 58.3333 90.777 94.85
$data['id'] 13-11-24 11:00 39 16.6667 0 52.1739 91.1431 92.925
$data['id'] 12-11-24 11:00 46 16.6667 20.1342 54.5455 93.3763 92.9
$data['id'] 11-11-24 11:00 48 16.6667 25.8278 59.0909 94.1772 95.75
$data['id'] 08-11-24 11:00 46 16.6667 17.4193 58.3333 93.2529 94.5
$data['id'] 07-11-24 11:00 48 16.6667 21.9354 58.3333 95.4199 95.75
$data['id'] 06-11-24 11:00 48 16.6667 25.1613 56.5217 94.4029 93.7
$data['id'] 05-11-24 11:00 42 50 20.43 59.0909 39.5443 93.25
$data['id'] 04-11-24 11:00 46 50 34.4086 63.6364 37.4145 96.85
$data['id'] 01-11-24 11:00 44 50 26.8817 62.5 37.2499 97.95
$data['id'] 31-10-24 11:00 42 50 21.5054 62.5 37.2493 97.1
$data['id'] 30-10-24 11:00 49 50 51.0416 65.2174 30.8814 97.5
$data['id'] 29-10-24 11:00 64 66.6667 95.8332 68.1818 27.9323 99.7
$data['id'] 28-10-24 11:00 52 50 62.5 66.6667 29.5044 99.45
$data['id'] 25-10-24 11:00 58 50 67.5926 65.2174 51.0099 99.75
$data['id'] 24-10-24 11:00 61 50 79.1366 65.2174 52.6032 99.55
$data['id'] 23-10-24 11:00 57 50 69.9454 59.0909 52.8878 98.4
$data['id'] 22-10-24 11:00 67 50 67.2131 54.5455 97.1259 98
$data['id'] 21-10-24 11:00 59 50 78.5 57.1429 52.6395 97.95
$data['id'] 18-10-24 11:00 62 50 84.8341 59.0909 56.1746 98.55
$data['id'] 17-10-24 11:00 55 33.3333 77.2512 56.5217 55.4914 98.2
$data['id'] 16-10-24 11:00 59 50 74.6938 56.8182 56.5422 97.95
$data['id'] 15-10-24 11:00 62 50 81.2245 61.3636 56.6052 98.1
$data['id'] 14-10-24 11:00 56 33.3333 76.7346 59.5238 56.5031 97.75
$data['id'] 11-10-24 11:00 56 16.6667 62.8571 54.3478 93.7574 96.55
$data['id'] 10-10-24 11:00 53 33.3333 66.1224 56.5217 56.4259 96.65
$data['id'] 09-10-24 11:00 56 16.6667 63.2653 52.1739 93.4723 96.55
$data['id'] 08-10-24 11:00 57 16.6667 63.6734 54.5455 93.4271 96.55
$data['id'] 07-10-24 11:00 61 33.3333 64.4897 57.1429 93.0211 96.75
$data['id'] 04-10-24 11:00 52 33.3333 65.7142 52.1739 57.8038 96.5
$data['id'] 03-10-24 11:00 51 33.3333 66.5306 47.8261 57.5609 95.7
$data['id'] 02-10-24 11:00 58 50 77.1428 47.8261 58.0898 97.35
$data['id'] 01-10-24 11:00 57 50 74.6938 45.4545 58.4978 97.05
$data['id'] 30-09-24 11:00 56 33.3333 59.5918 40.9091 91.5932 95.85
$data['id'] 27-09-24 11:00 56 50 82.0408 45.8333 46.4695 99.9
$data['id'] 26-09-24 11:00 55 50 81.2245 45.8333 46.6641 98.4
$data['id'] 25-09-24 11:00 59 50 91.8367 47.8261 48.7746 98
$data['id'] 24-09-24 11:00 55 50 79.5918 45.4545 47.1829 98.65
$data['id'] 23-09-24 11:00 55 50 77.551 50 43.6099 98.8
$data['id'] 20-09-24 11:00 51 33.3333 76.7346 54.1667 41.8403 97.7
$data['id'] 19-09-24 11:00 52 33.3333 84.0816 54.1667 37.2301 99

Nota: De weergegeven waardes zijn genormaliseerd. De genormaliseerde waarden zijn zo ingesteld dat een waarde van 50 een neutraal marktsentiment aangeeft. Waarden boven de 50 wijzen op een positief (bullish) sentiment (hebzucht), terwijl waarden onder de 50 een negatief (bearish) sentiment (angst) aanduiden.